

Meridional progression of interannual oscillations in summer Arctic TOA fluxes

Dong L. Wu¹ and Jae N. Lee^{1,2}

- 1. NASA GSFC
- 2. UMBC JCET

Outline

- CERES TOA fluxes over the Arctic
 - Summertime interannual oscillations
 - Arctic warming -> albedo decrease(lost of perennial ice/snow cover)
 - Open Arctic Ocean -> Increasing atmos-ocean-cryo couplings
- Pole and mid-latitude connections
 - Teleconnection: poleward heat/moisture transport
 - New Arctic -> mid-latitude weather/climate
- "Centers of action"
 - Where is the most vulnerable place in terms of TOA radiation as the Arctic warms?
 - What are their impacts?

Poleward Transfer of Energy

"Ocean" = sum of oceanic poleward flux and heat storage

Credit: Georgia State U

Zelinka and Hartmann (2012)

Arctic Energy Accumulation

(Mayer et al., 2016)

Cryospheric forcing and constructive interference with atmospheric dynamics

Cohen et al. (2014)

https://usclivar.org/meetings/2017-arctic-midlatitude-workshop-agenda

CERES TOA Fluxes

(Northern Hemispheric Augusts)

Consistency Check: CERES and MISR SW Albedos

- CERES
 - Broad band SW measurements
 - Angular distribution function (ADM) models

- MISR
 - Narrow-to-broad band model
 - Multi-angle measurements

Interannual Variability by Month

Importance of June TOA Flux

- Strong correlation
 (r=0.91) between Arctic
 June SW TOA flux and
 September sea ice extent
 (SIE)
- June SW TOA flux as an empirical predictor of September SIE for field campaign and shipping planning

Zhan and Davies (2017)

Method:

Wave Decomposition -> Processes

- 2D-FFT to split/combine orthogonal wave components
- Time-latitude series: poleward and equatorward components
- What processes affect midlatitude TOA flux variabilities?

2D FFT for Wave Decomposition

Decomposition of CERES TOA Flux Variations

- Stronger (~60%)
 equatorward
 component -> polar
 influence on mid latitudes
- Coherent patterns at 50°N-60°N
- Increasing oscillations since ~2009 with a period of ~4 years

Decomposition of CERES Total, LW and SW TOA Flux Variations

- Summer (JJAS) Total flux dominated by SW flux variability
- Similar equatorward component in Total and SW variability, showing 4-yr oscillations after 2009
- Anti-correlation between LW and SW oscillations in each component

Anti-Correlation Between Outgoing LW and Reflected SW TOA Fluxes

LW and SW flux variabilities:

• Tropics: clouds

• NH: clouds, lands, sea ice

• SH: clouds, sea ice

Cause(s) of meridional progression in TOA flux perturbation?

- Atmosphere has short-term heat storage.
- Cryosphere-ocean-atmosphere interactions (e.g., constructive resonance)?
- Arctic/Atlantic Oceans (e.g., storage and transport)?

Concept of "Center of Action"

- Max and min pressures (Teisserenc de Bort, 1881)
- Southern oscillation (Gilbert Walker, 1925)

Steps in CERES flux analysis:

- Apply decomposition analysis to each longitudinal monthly means instead of zonal means
- 2. Apply EOF analysis on equatorward and poleward components separately

Patterns of Interannual TOA Flux Oscillations (June-September Averages)

July 19, 2015

Summary

- Coherent interannual oscillations in summertime Arctic and subarctic TOA fluxes.
- Decomposition into equatorward and poleward components, to identify processes affecting midlatitude.
- Intensified equatorward progression after 2009 with a period of ~4 years.
- Two centers of action emerge from EOF analysis: Beaufort Sea to Queen Elizabeth Islands (BS-QEI) and the Barents-Kara Sea (BKS).